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Fig. 11—Frequency dependence of hybrid-tee switch characteristic
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switch has proved to be faster than the ferrite switch.
As far as the solid-state material is concerned, both
germanium and ferrite have relaxation times less than
1 musec. It is considerably more difficult to develop fast
rise time magnetic pulses (20 to 30 cersteds) for ferrite
switching than it is to develop fast rise time voltage
pulses for semiconductor switching. Ferrite switches are
indicated for high-power high-speed microwave switch-
ing and semiconductor switches are indicated for low-
power high-speed microwave switching.?
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Q Measurements in the Presence

of Coupling Losses®

E. L. GINZTON{

Summary—In the use of the impedance (Q-circle) method of
measuring the cavity Q values, the presence of losses in the coupling
network (between the cavity and the available external terminals) is
usually neglected. If appreciable losses are present this simplifica-
tion is not justified, and its use can lead to significant errors.

The losses in any coupling network can be described by means of
an equivalent canonical circuit containing a series and a shunt resis-
tor. The losses due to the series element are immediately apparent
from the character of the impedance locus when plotted on a Smith
Chart and can be corrected for an ‘‘apparent” Q value. However,
unless the shunt loss can be determined by a separate calibration
of the coupling network, the apparent Q value will be ambiguous be-
cause the shunt losses occurring in the coupling network are not
distinguishable from those in the cavity proper.

Methods for using the impedance data for determining the Q
values are given on the assumption that the coupling network param-
eters can be found. It is also pointed out that due to the presence of
coupling losses the loaded and external ¢ values are no longer
uniquely defined, but their meaning depends upon the application of
interest. Formulas relating these to the coupling network parameters
are given.

* Manuscript received by the PGMTT, February 12, 1958; re-
vised rnanuscript received, May 26, 1958.

t Microwave Lab., W. W. Hansen Phys. Labs., Stanford Uni-
versity, Stanford, Calif.

INTRODUCTION

COMMON useful method of measuring the Q

A values of a microwave cavity consists of meas-
-~ uring the self-impedance of the cavity as a
function of frequency. The equivalent circuit of the
main elements of apparatus needed for this measure-
ment is shown schematically in Fig. 1, where the cav-
ity is shown as if it were a lumped-constant resonant
circuit inductively coupled to the uniform transmission
line (which contains a slotted section for impedance
measurements). This special form of the equivalent
circuit has been shown to be sufficiently general and
accurate for most practical cases: the resonance phe-
nomenon occurs within the cavity so that the losses
within it can be represented by the resistor in series
Wlth Lz and Cz.

The losses in the coupling network, i.e., in the elements
which transfer energy from the transmission line into
the cavity, are generally very small and usually their
presence can be neglected. The theory of the experi-
ment required to determine the Q values, details of
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Fig. 1—(a) Schematic representation of the apparatus used in im-
pedance method of cavity-Q measurement. (b) The equivalent
circuit at the detuned short position for the negligible coupling-
loss case.

measurement, and interpretation of the impedance data,
sources of error, helpful techniques, etc., are discussed in
numerous sources.!-?

The assumption that the coupling network is lossless
is not always accurate. If sufficient losses are present,
the available methods for determination of Q are not
valid in general and their use can lead to significant
errors. This fact has been recognized previously, and a
special case in which the coupling loss can be repre-
sented by a simple resistance in series with the cou-
pling element has been described.>*

The purpose of this paper is to discuss the more gener-
al case in which the losses in the coupling network need
not be presumed to be of the series type but can be of
the series, shunt, or distributed form.

THE EouivALENT CIRCUIT

The general form of the equivalent circuit represent-
ing the cavity and its coupling network is shown in
Fig. 2. The terminals of the coupling network 1-1 and
2-2 are presumed to be selected so that all sources of
loss within the network are included between these
terminals. Further, the terminals 1-1 are to be located
within the uniform transmission line of the standing-
wave detector and are to be selected in a manner which

! For example, E. L. Ginzton, “Microwave Measurements,” Mc-
Graw-Hill Book Co., Inc., New York, N, Y., ch. 9; 1957.

% A, Singh, “An improved method for the determination of Q of
cavity resonators,” IRE TRANS. ON MICROWAVE THEORY AXD TECH-
NIQUES, vol. MTT-6, pp. 155-160; April, 1958.

3 L. Malter and G. R. Brewer, “Microwave Q measurements in
the presence of series losses,” J. Appl. Phys., vol. 20, pp. 918-925;
October, 1949,

* Ginzton, op. cit., pp. 424428,
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Fig. 2—The general form of the equivalent circuit representing
the apparatus shown in Fig. 1(a).

T ' T
L Rs mi Xs © b
VWV
! | B'Zo
Zo I !
: RP X \
| I
, |
GENERATOR |  COUPLING NETWORK| b
CAVITY
(a)
.
!l RS ib

Bllzo

] — - — ——
20
s el

(b)

Fig. 3—(a) Representation of the coupling network in the canonical
form. (b) Simplification of (a) transforming the elements on the
secondary side to the primary.

will simplify the interpretation and manipulation of the
laboratory data. Specifically, terminals 1-1 will be lo-
cated at the position which is called the detuned-short
(DS) position, in analogy with the unambiguous lo-
cation of such terminals in the absence of losses in
the coupling network; the actual location of these
terminals will be discussed below.

There are several forms of an equivalent circuit
which can be used to describe the coupling network: the
L, T, w, lattice, etc. In this case, it is convenient to
use the canonical network shown in Fig. 3(a).57 In this
network, the resistances R, and R, represent the dissipa-
tive losses of the network; the reactances X, and X,,
together with the location of the input reference plane
Ty, represent the reactive elements. The equivalent
circuit of Fig. 3(a) can be simplified as shown in Fig.
3(b), where the new resonant circuit has a resonant
impedance 8"’ Z after transformation through the trans-
former. Due to the presence of various coupling react-
ances, which are assumed to be small, the resonant

» A. Weissfloch, “Circle geometric four-terminal network the-
ory; its significance as a circuit theory at microwaves,” Hochfre-
quenz. Elektr., pp. 100-123; April, 1943.

8 L. B. Felsen and A. A. Oliner, “Determination of equivalent
circuit parameters for dissipative microwave structures,” PROC.
IRE, vol. 42, pp. 477-483; February, 1954.

" Ginzton, op. cit., pp. 323-326, 328-329.
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SMITH CHART

Fig. 4—Variation of the cavity impedance with frequency in the
presence of coupling loss (plotted on a Smith Chart).

frequency of the circuit shown in Fig. 3(b) is no longer
equal to the resonant frequency of the cavity itself;
however, this is of no particular importance, just as the
presence of the small coupling reactances in the case
of negligible losses is immaterial.

The variation of impedance with frequency of the
circuit shown in Fig. 3(b) at terminals 1-1 is indicated
in Fig. 4 for a typical case. This locus must be a circle,
since the transformation of the circular impedance locus
of the impedance at terminals b-b in Fig. 3 through the
coupling network is conformal.

For simplicity, the terminals 1-1, henceforth called the
relerence plane 7 or merely 14, are chosen such that
the impedance locus in Fig. 4 is symmetrical about the
resistive axis. (Actually, there are two such planes
\./4 apart; the one that makes <1 is selected, as indi-
cated in Fig. 4.) If the series resistance in Fig. 3(b) were
zero, the impedance locus would pass through the origin
(R=0, X=0); hence, the location of 77 in the manner
stated corresponds to the location of the “detuned-
short position” in the no-loss case.

Referring to Fig. 4, let the intercepts of the imped-
ance locus with the normalized resistive axis ol the
Smith Chart be called o and 8 which, by comparison
with Fig. 3(b), are:

R .
a = — (1
Zo
B=a+( 2a)
where
oo R
R,+8"7Zs
or
Y
ﬁ/ e B// A (Zb)
v+ 1
where
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The intercepts described by « and {8 result, respectively,
when the cavity is tuned far off resonance and when it
is tuned to the angular frequency w; (at which the
impedance across R, becomes a maximum and purely
resistive). For descriptive purposes, quite arbitrarily,
the angular frequency w, may be called the resonant

frequency.

Referring to Fig. 3(b), the impedance Zy at 73 can
be represented by

R, 7w
Zu = Rs + I (3)
R, + Zyn
but
YA B’
e = €Y

Zy 1 + 72Q00

where Z,=characteristic impedance of the input trans-
mission line. Q, is the unloaded Q value of the resonant
cavity, and

8= (w—wo)/w=1{Irequency tuning parameter
w=angular frequency =2rf
wo=angular frequency at which the input impedance
is maximum and real.

Combining (3) and (4) and rearranging,

Zu ﬁ -
2 g, 5
Z T 0 )
where
{ 1
0/ = 0o 3"2? (6a)
R,
Y
= g ——— 6b
Q ST (6b)

Thus, the Smith Chart impedance locus as seen at 13
is modified by the presence of loss in the two ways indi-
cated in Fig. 5. The dashed circle shows the locus that
would be obtained if there were no coupling losses. If
the series losses alone were present ([,= ), the im-
pedance locus would pass through the point (@, 0)
instead of (0, 0). If the shunt losses alone were present
(R, =0), the circle would pass through (0, 0) but would
correspond to a cavity with a lowered Q. The solid
circle shown is one that would be obtained if both losses
were present simultaneously.

GENERAL DI1sCUSSION AND DETERMINATION OF (g

It is apparent from the above discussion that it is
necessary to know the coupling network parameters
R, and R, to permit the interpretation of the impedance
information available at terminals 1-1. The constants
R, and R, could be found experimentally if the cou-
pling network at its output terminals could be replaced
by a moving short circuit to permit separate experi-
mental determination of the parameters of the canoni-
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Fig. 5—The effect of coupling network losses
upon the impedance locus.

cal circuit.® If these parameters were experimentally
determined, there would be two possible approaches
to the determination of cavity Q: the measured values
of impedance Zu could be converted to the values of
impedance Zy, at the cavity terminals, and the usual
well-known procedures to analyze the resultant ideal
impedance locus could be used; or, the measured imped-
ance locus could be analyzed directly using the ap-
proach which is described below.

In many cases, however, the separation of the cavity
from its coupling network is impractical or impossible;
this leads to difficulties which are discussed more fully
further on. It should be obvious that the value of
parameter R, (i.e., o) can be determined immediately
from the experimentally determined impedance locus at
terminals 1-1.

Consider for the moment that the parameters «, 8, and
v are all known. Since in many practical cases the
coupling network losses are small and are due to either
series or shunt elements, it is convenient at first to
consider these two cases separately from the more
general case.

Case 1) Shunt Losses Only
In this case, ®=0, and (5) becomes
-
1-+42048
The apparent value @y’ can be found using the measured

impedance locus.? The true value of @, can be found
from (6) which is repeated below.

7—!—1.

le

(7

Qo = Qo (8)
The evaluation of the true value of Q, requires the
knowledge of the parameter .

8 The parameters of the canonical network can be found as de-
scribed in Felsen and Oliner, op. ¢it., or Ginzton, op. cit., pp. 3+3-345,
9 See, for instance, Ginzton, op. cif., pp. 406-424.
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Case 2) Series Losses Only
In this case, R,= », and (5) becomes:
Zn B—a
———— = a —-——.——~— .
Assuming that an experimental impedance locus such
as is shown in Fig. 4 has been obtained by measuring
the impedance at a number of frequencies which are also
measured, the Q, value can be found as follows.
Let 2Q40 = 4+ 1. Substituting this into (9) and simpli-
fyving:

(9)

_BtatjB-a

7 ) (10)

Using the values of o and 8 obtained from the experi-
mental plot for the given locus, the real and imaginary
parts of (10) can be computed and located on the locus.
This determines the two points on the locus for which
2Q¢0=+1. If the frequencies at which they occur are
found to be fi and f;, then

fi— /e ‘

Jo

Qo =8, — 6 =

(11)

If the two points on the locus so determined do not
correspond to the points for which the frequencies
have been measured, the desired frequencies f1 and
fo can be found by means of an auwiliary linear fre-
guency scale which can be constructed as indicated in
Fig. 6, the geometrical construction for which is justi-
fied in the Appendix. Let points a, 3, ¢, d, ¢, and f repre-
sent a set of impedances measured at frequencies
Jay fos fes fa, fer and fy, respectively. A line 4B is drawn
perpendicularly to the resistive axis and radial lines
are drawn from («, 0) through the known impedance
points. The intercepts along line 4B are labeled with
the known frequency f, - - - f, and are linear in fre-
quency, thus permitting the determination of the fre-
quency of any point along the impedance locus.

Case 3) Series and Shunt Losses

If both the series and shunt losses are present, and
each is small, the Q" value can be found, first using (11)
which takes into account the presence of the series
losses alone; the effect of the presence of the shunt
losses can then be taken into account by multiplying
this value by the correction factor given by (8).

If the losses are not small, the known parameters
of the coupling network permit the calculation of the
impedance at the reference plane 7} for the hall-power
points (i.e., 2Qu6= 1 1). The two frequencies at which
these impedances are actually found define the half-
power bandwidth from which the Q, value can be com-
puted. Alternatively, the impedance at 7} can be meas-
ured as a function of {requency and each of the measured
values converted by computation, resulting in the ideal
impedance locus which can be analyzed by conventional
means.
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Fig. 6—Geometrical construction used to establish a linear frequency
scale for interpolation between measured impedance points.

In some cases, the coupling network may happen
to be an integral part of the cavity, making it impossible
or impractical to determine the network constants. In
this case, the observation of the impedance locus at
the input of the coupling network allows the evaluation
of the series losses o and the apparent value Qy’. The
separation of losses occurring within the resonant cavity
and the coupling network becomes impossible; if this
distinction happens to be important, some expedient
must be found to separate the losses in the two parts
of the structure. Sometimes this can be done by con-
structing an auxiliary structure susceptible to physical
dismounting to permit a more complete experimental
study of its parts.

DETERMINATION OF LOADED AND EXTERNAL
Q VALUES

In addition to the natural or unloaded Q values of
the cavity, Q,, other Q wvalues are important in the
usual practice. These normally are Qp and Qex:, the
loaded and external Q values, respectively. In the pres-
ence of losses, still other  values become relevant, as
defined below. Using the conventional definition for
Q, the following descriptive statements can be made:

energy stored

= 27 12
Qo / energy lost in the cavity proper (12)
energy stored
Q' = 2xf = (13)
energy lost in cavity and shunt
element of coupling network
energy stored
Q" = 2nf & (14)

energy lost in cavity and
coupling network®

energy stored B
2xf - : : (13)
energy lost in cavity, coupling
network, and load

Il

053
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energy stored

Qex\; = 27rf (16)

energy lost in the load
For reference, in the absence of coupling network
losses, these can be written as follows, using the nota-
tion shown in Fig. 1(b) (with the cavity coupled
through the coupling network to a source with imped-
ance equal to Z,).10

0o = %ZL—" = wCBZ an

BZy*
QL = «C 570+ Z (18)
Qext = wCZy (19)
Qo= Qo = Q" (20)

and

EEUNES o

Or Qo Oext

In the presence of coupling losses, the meaning of
Qo, @', Qo'', and Q;, remains clear and unambiguous.
In the case of Qex, it is necessary to be specific about
the meaning of the load. Referring to Fig. 3(b), it is
natural to regard the source impedance Z, as the “load”
upon the network and the cavity. However, in the
design of certain electron devices, it is convenient to
include part or all of the loss in the coupling network
with the load. This leads to the following three cases.

Case 1)

Consider Z, alone as the load. In this case, the expres-
sion corresponding to (21) becomes:

! ! + ! (22)
QL QOH Qext
Case 2)
Consider Z; and R, as the load, and
1 1 i
—— = . (23)
QL QO Qext
Case 3)
Consider Zy, R,, and R, as the load and
1 1 1
—_— = — (24)
QL QO Qext

Assuming that the values of Q" and/or Q, have been
experimentally obtained as described above, and as-
suming that the parameters «, 5, and v are known, the
expressions for Qr and Qexs for the three cases can be
written as follows.

Referring to Fig. 3(b), if V is the voltage across C,
then, from (12),

1 Ipid., pp. 393-397.
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1
— CV?
N (23)
Go = 2mf =4
>G7)
Qo = wCB"Z,. (26)
Similarly,
’ — /IJ 2—
Qo qunl+§7yi (27)
0%
= — 28
vy +1 28)
and,
1+ «)*
"o ’ - 29
= T B 2%
0% 1+ «)*
= Qp ——— ——— 30
T a4 ) G0
1+«
= 00 (—— 31
oomar (1) o
v 14«
= 0 : : 32
¢ I1+v1+8 82)

The Q external values can be found from (16) for the
three conditions stated above or by combining (22),
(23), and (24), with (29), (28), and (26), respectively.
These lead to:

Case 1)
a+ 1)
Qext = Qo’(—~ (33)
B8 —«
Case 2)
14+«
Qext = Q0 (34)
B8 —a
Case 3)
1+«
ext . 35
U = O e T T G %)

Thus, if «, 8, and v are all known, it is possible to
determine the various Q values by using the appropriate
relations. If v is not known, the remaining Q values can
still be computed, but only in terms of the apparent Q
value, Qo’, a value which does not distinguish between
the losses in the cavity and the shunt element of the
coupling network.

CONCLUSION

It has been shown that an arbitrary coupling network
between a uniform transmission line and a cavity can
be represented by means of an equivalent network
consisting of series and shunt resistors which, qualita-
tively, represent the series and the shunt losses in the
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Fig. 7—Geometrical construction used to prove the linearity
of the frequency scale.

coupling network. If both of these can be measured by
an independent calibration experiment, the Q, of the
cavity can be determined unambiguously from the
measurements of input impedance in the uniform trans-
mission line as a function of frequency. If separate
measurements cannot be made, the measurement of
input impedance as a function of frequency permits the
determination only of the apparent Q wvalue of the
cavity, Qo’. Unless the shunt losses in the coupling
network are separately evaluated, this apparent Q value
does not distinguish between the losses in the coupling
network and the cavity proper.,

APPENDIX
CONSTRUCTION OF A LINEAR FREQUENCY SCALE

Fig. 6 shows the geometrical construction which
may be used to establish a linear frequency scale in
order to obtain frequencies for points along an imped-
ance locus for which experimental frequency values are
not available.

Referring to Fig. 7, draw a straight line perpendicu-
lar to the resistive axis; although the location of this
line is immaterial, for the sake of simplicity in the
proof, assume that it passes through the point (R=1,
X =0). Radial lines originating from the point (e, 0) and
passing through the point on the impedance locus for
which the frequencies are known provide intercepts
along the lines 4-B in frequency units. It will be shown
below that the frequency along the axis 4-B is linear
so that the frequency of any point on the locus can be
determined by projecting a radial line from (e, 0) to
4-B and reading the distance along A-B in frequency
units (as established from the known frequency points).
The proof of the construction is as follows.

Using the large circle in Fig. 7 to represent the re-
flection coefficient plane, the vector FG is the reflection
coefficient I'. The impedance value along the impedance
locus is given by (5). The corresponding values of the
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reflection coefficient can be computed {rom

Zu — 1
- - (36)
Zu+1
or, combining with (5),
_ (B —=1) +72Q08(« — 1) .
(B + 1) + j2058(cc + 1
Thus, when 2Q¢6= + =,
DF = | I.|
OF - L7 (38)
1+«
The distance
DG =DF+T
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e 1 — -1 12006(c — 1
PE — @ G ) +]’ Qod(a ) (39)
L+a (B+1) 4+ 72000(c + 1)
26 —
- G L 0)

(a4 1B+ 1) + 5 + 1)%208

The phase angle ®, shown in Fig. 7, is equal to argument
DG and is found from the ratio of imaginary to real
parts of (40):

2Q05(0€ + 1)

B+1

The distance FH, being proportional to tan ®, is pro-
portional to 8, z.e., the frequency. Thus, the points
projected from the locus onto the straight line 4-B
produce intercepts whose lengths are proportional to
{requency (Q.E.D.).

$ = tan~! (41)

The Excitation of a Dielecttic Rod by a
Cylindrical Waveguide*

C. M. ANGULOt axp W. S. C. CHANGT

Summary—This paper is a theoretical analysis of the excitation
of the lowest circular symmetric TM surface wave along an infinite
circular dielectric rod by a metallic cylindrical waveguide coaxial
with the rod. The asymptotic expressions for all the fields are ob-
tained by means of the Wiener-Hopf method. The expressions for
the total average power transmitted to the surface wave, the total
average power reflected, and the total power radiated, per unit in-
cident power, are derived and computed for e=2.49 for various radii
of the dielectric rod.

INTRODUCTION

T is well known that a TM circular symmetric
J:[ surface wave can be easily launched along a cir-
cular dielectric rod by a metallic cylindrical wave-
guide. A condensed theoretical analysis of an idealized
version of this problem is given here. For the detailed
analysis, the reader is referred to a previous report by
the authors!
The structure under considerationis represented in
Fig. 1. It consists of an infinite circular dielectric rod
of relative permittivity e and radius ¢ fitted tight into a

* Manuscript received by the PGMTT, February 14, 1958; re-
vised manuscript received, June 2, 1958. The research described in
this paper has been sponsored by the Cambridge AF Res. Ctr. under
Contract AF 19(604)-1391 with Brown University.

t Brown University, Providence, R. I.

I Electronics Res. Lab., Stanford University, Stanford, Calif.
Formerly at Brown UmverSLty, Providence, R. 1.

1 C., M. Angulo and W. S. Ch hang, “Excitation of a Dielectric
Rod by a Cylindrical Waveguide,” Div. of Eng., Brown University,
Providence, R. 1., Scientific Rep. AF 1391/7; july 1957.

semi-infinite cylindrical waveguide ot infinitely thin
metallic wall which extends from g= — « to z2=0.

The incident energy is carried by the TM, 1 mode of
the cvlindrical metallic waveguide. It excites a TM
surface wave along the rod, a reflected wave in the
waveguide, and a scattered radiation at the end of the
metallic waveguide. It is assumed here that along the di-
electric rod only the lowest circular symmetric surface
wave can exist and that the TM,; mode is the only
mode propagating inside the waveguide. This is true if
2.405(e—1)"12 < Ka<5.52¢7 12, where K =27/\.

Since the structure considered (see Fig. 1) is inde-
pendent of ¢ and the incident wave is the TMy,; mode,
only the circular symmetric TM proper and improper
modes are excited. Therefore, /8¢ =0 and H,=Fy=H,
=0. Furthermore, all the higher TM modes «xcited
inside the cvlindrical guide attenuate exponentially in
the negative z direction. It follows immediately that
the far zone fields of our problem must be of the forms:

. = AJo(Kep) exp [— 7(K2 — K 2)12%]
+ BJo(K.p) exp [j(K2 — K %)) (1)

| Awee
_ 7 0 (K2 — Kcﬁ)x/fzz]

Ji(K.p) exp [—

c

Bwe €0
T K exp [j(K2e — K24 ] (2)

c



