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Fig. 1l—Frequency dependence of hybrid-tee switch characteristic
of both silicon and germanium diodes.
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switch has proved to be faster than the ferrite switch.

As far as the solid-state material is concerned, both

germanium and ferrite have relaxation times less than

1 mpsec. It is considerably more difficult to develop fast

rise time magnetic pulses (20 to 30 oersteds) for ferrite

switching than it is to develop fast rise time voltage

pulses for semiconductor switching. Ferrite switches are

indicated for high-power high-speed microwave switch-

ing and semiconductor switches are indicated for low-

power high-speed microwave switching.8
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~ Since the writing of this article, another microwave diode switch
has been proposed by A. Uhlir, Jr.? “The potential of semiconductor
diodes in high-frequency commumcations,” I’ROC. IRE, vol. 46, PP.
1099–1 115; June, 1958. If his theory results in another practical
switch, the techniques reported here should be equally useful with
either switch.

Microwave Q Measurements in the Presence

of Coupling Losses*

E. L. GINZTON~

Suntmary—In the use of the impedance (Q-circle) method of
measuring the cavity Q values, the presence of losses in the coupling
network (between the cavity and the available external terminals) is

usually neglected. If appreciable losses are present this simplifica-

tion is not justitied, and its use can lead to significant errors.
The losses in any coupling network can be described by means of

an equivalent canonical circuit containing a series and a shunt resis-
tor. The losses due to the series element are immediately apparent

from the character of the impedance locus when plotted on a Smith

Chart imd can be corrected for an “apparent” Q value. However,
unless the shunt loss can be determined by a separate calibration
of the coupling network, the apparent Q value will be ambiguous be-
cause the shunt losses occurring in the coupling network are not
distinguishable from those in the cavity proper.

Methods for using the impedance data for determining the Q

values are given on the assumption that the coupling network param-

eters cm be found. It is also pointed out that due to the presence of

coupling losses the loaded and external Q values are no longer
tmique”~y defined, but their meaning depends upon the application of
interest. Formulas relating these to the coupling network parameters
are given.

“ Manuscript received by the PGMTT, February 12, 1958; re-
vised manuscript received, May 26, 1958.

t Microwave Lab., W. IV. Hansen Phys. Labs., Stanford IJni-
~ersit y, Stanford, Cahf.

INTRODUCTION

ACOMMON useful method of measuring the Q

values of a microwave cavity consists of meas-
A

uriug the self-impedance of the cavity as a

function of frequency. The equivalent circuit of the

main elements of apparatus needed for this measure-

ment is shown schematically in Fig. 1, where the cav-

ity is shown as if it were a lumped-constant resonant

circuit inductively coupled to the uniform transmission

line (which contains a slotted section for impedance

measurements). This special form of the equivalent

circuit has been shown to be sufficiently genera] and

accurate for most practical cases: the resonance phe-

nomenon occurs within the cavity so that the losses

within it can be represented by the resistor in series

with LZ and CZ.

The losses in the coupling netwo~k, i.e., in the elements

which transfer energy from the transmission line into

the cavity, are generally very small and usually their

presence can be neglected. The theory of the experi-

ment required to determine the Q values, details of
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Fig. l—(a) Schematic representation of the apparatus used in im-
pedance method of cavity-Q measurement. (b) The equivalent
circuit at the detuned short position for the negligible coupling-
10ss case.

measurement, and interpretation of the impedance data,

sources of error, helpful techniques, etc., are discussed in

numerous sources.1 fz

The assumption that the coupling netm-ork is lossless

is not always accurate. If sufficient losses are present,

the available methods for determination of Q are not

valid in general and their use can lead to significant

errors. This fact has been recognized previously, and a

special case in which the coupling loss can be repre-

sented by a simple resistance in series with the cou-

pling element has been described. ‘–~

The purpose of this paper is to discuss the more gener-

al case in which the losses in the coupling network need

not be presumed to be of the series type but can be of

the series, shunt, or distributed form.

THE EQUIVALENT CIRCUIT

The general form of the equivalent circuit represent-

ing the cavity and its coupling network is shown in

Fig. 2. The terminals of the coupling network 1-1 and

2-2 are presumed to be selected so that all sources of

loss within the network are included bet~veell these

terminals. Further, the terminals 1-1 are to be located

within the uniform transmission line of the standing-

Wave detector anc[ are to be selected ill a ~allller ~vhich

1 For example, E. L. Giuztou, “Microwave Measurements, ” Mc-
Graw-Hill Book Co., Inc., New York, N. Y., ch. 9; 1957.

~ A. Singh, “An improved method for the determination of Q of
cavity resonators, ” IRE TRANS. ON MICROWAVE THEORY AND TECJI-
NIQIJES, vol. MTT-6, pp. 155-160; April, 1958.

3 L. iVIalter and G. R. Brewer, “Microwave Q measurements in
the presence of series losses, ” ~. Af@, P/ZYS,, T-ol, ’20, pp, 91 W)Z5;

Ch-tober, 1949.
AGi&ton, op. cit.,pp. 424428,
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Fig. 2—The general form of the equ!val:ut circuit representing
the apparatus shown m Fig. 1(a).
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Fig. 3—(a) Representation of the coupliug network in the canonical
form. (b) Simplification of (a) transforming the elelmeuts 011the
secondary side to the primary,

will simplif~- the interpretation and manipulation of the

laboratory data. Specifically, terminals 1-1 will be lo-

cated at the position which is called the detuned-slzort

(DS) position, in analogy with the unambiguous lo-

cation of such terminals in the absence of losses in

the coupling network; the actual location of these

terminals will be discussed belo~v.

‘Ihere are several forms of an equivalent circuit

which can be used to describe the coupling network: the

L, T, r, lattice, etc. In this case, it is convenient to

use the canonical network shown in Fig. 3(a) .5–7 I n this

network, the resistances R. and RP represent the dissipa-

tive losses of the network; the reactance XP and X.,

together ~vith the location of the input reference plane

Tl, represent the reactive elements. The equivalent

circuit of Fig. 3(a) can be simplified as shown in Fig.

3(b), where the new resonant circuit has a resonant

impedance ,6’’20 after transformation through the trans-

former. Due to the presence of various coupling react-

ance, which are assumed to be small, the resonant

~.1. Weissfloch, “Circle geometric four-terminal network the-
ory; its significance as a circuit theory at microwaves,’> Hoclzfre-

quenz. Elektr , pp. 100–123; April, 1943.
e L. B. Felse]l and .-1. A. Oliner, “Determination of equivalent

circuit parameters for dissipative microwave structures, ” FROC.
11<K, vol. 42, pp. 477–482: February. 1954.

‘ Gilwton, op. cit., pp. 323–326, 328-,329.
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Fig. 4—Variation of the cavity impedance with frequency in the
presence of coupling loss (plotted on a Smith Chart).

frequency of the circuit shown in Fig. 3(b) is no longer

equal to the resonant frequency of the cavity itself;

however, this is of no particular importance, just as the

presence of the small coupling reactance in the case

of negligible losses is immaterial.

The variation of impedance with frequency of the

circuit shown in Fig. 3(b) at terminals 1-1 is indicated

in Fig. 4 for a typical case. This locus must be a circle,

S;nce the transformation of the circular impedance locus

of the impedance at terminals b-b in Fig. 3 through the

coupling network is conformal.

For simplicity, the terminals 1-1, henceforth called the

reference plane T1 or merely Tl, are chosen such that

the impedance locus in Fig. 4 is symmetrical about the

resistive axis. (Actually, there are two such planes

A</-l apart; the one that makes a <1 is selected, as indi-

cated in Fig. 4.) If the series resistance in Fig. 3(b) were

zero, the impedance locus would pass through the origin

(R= O, X = O); hence, the location of TI in the manner

stated corresponds to the location of the “detuned-

short position>> in the no-loss case.

Referring to Fig. 4, let the intercepts of the imped-

ance locus with the normalized resistive axis of the

S)mith Chart be called a ancl D which, by comparison

~vith Fig. 3(b), are:

R,
cy. ——

Zo

~, = _ AM’
R, + /?f’Z(I ‘

-y = Ri,//3’’zo.

The intercepts described by a and P result, respectively,

when the cavity is tuned far off resonance and when it

is tuned to the angulm frequency LOO (at which the

impedance across Rp becomes a maximum and purely

resistive). For descriptive purposes, quite arbitrarily,

the angular frequency tio may be called the resonant

~Yequency.

Referring to Fig. 3(b), the impedance ZIl at T1 can

be represented by

(3)

but

zbb b
II

—— . (4)
Z(J – _i_+ j2Qoii

where ZO = characteristic impedance of the input trans-

mission line. QO is the unloaded Q value of the resonant

cavity, and

ti = (a –tio)/cd = frequency tuning parameter

u = angular frequency= 2rj

OJO= angular frequency at which the input impedance

is maximum and real.

Combining (3) and (4) and rearranging,

Zll p–cl
–=a+ (5)

Zo 1 +j2Q;8 ‘

where

( 1’

Qo’ = Qo

1

@“z, (6a)
l+—

R,- j

= Q, ;;7 . (6b)

Thus, the Smith Chart impedance locus as seen at T1

is modified by the presence of loss in the two ways indi-

cated in Fig. 5. The dashed circle shows the 10CUs that

would be obtained if there were no coupling losses. If

the series losses alone were present (RP = @), the im-

pedance locus would pass through the point (a, 0)

instead of (O, O). If the shunt losses alcme were present

(R. = O), the circle would pass through (0, O) but would

correspond to a cavity with a lowered QO. The solid

circle shown is one that would be obtaired if both losses

were present simultaneousl~T.

GENERAL DISCUSSION AND DETERMINATION or QO

It is apparent from the above discl~ssion that it is

IIecessary to know the coupling network parameters

1<, and RP to permit the interpretation of the impedance

il~forrnatiou available at terminals 1-1. The cor~stants

R, and R, could be found experimentally if the cou-

pling network at its output terminals could be replaced

by a moving short circuit to permit separate experi-

mental determination of the parameters of the canoni-
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Fig. 5—The effect ?f coupling network losses
upon the Impedance locus.

cal circuit. 8 If these parameters were experimentally

determined, there would be two possible approaches

to the determination of cavity Q: the measured values

of impedance 211 could be converted to the values of

impedance Zbb at the Cavity terminals, and the usual

well-known procedures to analyze the resultant ideal

impedance locus could be used; or, the measured imped-

ance locus could be analyzed directly using the aP-

proach which is described below.

In many cases, however, the separation of the cavity

from its coupling network is impractical or impossible;

this leads to difficulties which are discussed more fully

further on. It should be obvious that the value of

parameter Rs (i. e., a) can be determined immediately

from the experimentally determined impedance locus at

terminals 1-1.

Consider for the moment that the parameters a, ~, and

-y are all known. Since in many practical cases the

coupling network losses are small and are due to either

series or shunt elements, it is convenient at first to

consider these two cases separately from the more

general case.

Case 1) Shunt Losses Only

In this case, a = O, and (5) becomes

Zll =
b

1 +j2Q0’s5 ‘
(7)

The apparent value QO’ can be found using the measured

impedance locus. 9 The true value of QO can be found

from (6) which is repeated below.

Qo=Qo/~.

‘Y

(8)

The evaluation of the true value of QO requires the

knowledge of the parameter -y.

8 The parameters of the canonical network can be found as de-
scribed in Felsen and Oliner, op. cit., or Ginzton, op. ctf., pp. 343–345.

g See, for instance, Ginzton, op. cit., pp. 406–424.

Case 2) Se~ies Losses Only

In this case, R,= cc , and (5) becomes:

Zll b–a
—. a+
Zll 1 +j2Q06 -

(9)

Assuming that an experimental impedance locus such

as is shown in Fig. 4 has been obtained by measuring

the impedance at a number of frequencies which are also

measured, the Q“ value can be found as follows.

Let 2Q06 = t 1. Substituting this into (9) and simpli-

f~ing:

211 fl+a+j(fl -a)

Zo – ~ ‘“
(10)

Usiug the values of a and ~ obtained from the experi-

mental plot for the given locus, the real and imaginary

parts of (10) can be computed and located on the locus.

This determines the two points on the locus for which

2Qo~ = + 1. If the frequencies at which they occur are

found to be fl and f2, then

f, – f,
Qo=61–82=—”

,fO
(11)

If the two points on the locus so determined do not

correspond to the points for which the frequencies

have been measured, the desired frequencies j, and

fz can be found by means of an al~xiliary linear fr-e-

quency scale which can be constructed as indicated in

Fig. 6, the geometrical construction for which is j usti-

fied in the Appendix. Let points a, b, c, d, e, and f repre-

sent a set of impedances measured at frequencies

f., fb, f., fd, f., and ff, respectively. A line AB k drawn

perpendicularly to the resistive axis and radial lines

are drawn from (a, O) through the known impedance

points. The intercepts along line A B are labeled with

the known frequency f. c . . f. and are linear in fre-

quency, thus permitting the determination of the fre-

quency of any point along the impedance locus.

Case 3) Series and Shunt Losses

If both the series and shunt losses are present, and

each is small, the Qo’ value can be found, first using (11)

which takes into account the presence of the series

losses alone; the effect of the presence of the shunt

losses can then be taken into account by multiplying

this value by the correction factor given by (8).

If the losses are not small,- the known parameters

of the coupling network permit the calculation of the

impedance at the reference plane T1 for the half-power

points (i.e., 2Q0~ = +- 1). The two frequencies at which

these impedances are actually found define the half-

power bandwidth from which the QO value can be com-

puted. Alternatively, the impedance at TI can be meas-

ured as a function of frequency and each of the measured

values converted by computation, resulting in the ideal

impedance locus which can be analyzed by conventional

means.
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Fig. 6–-Geometrical col~struction used to establish a linear frsquency

scale for mterpolatlon between measured Impedance points.

In some cases, the coupling network may happen

to be an integral part of the cavity, making it impossible

or impractical to determine the network constants. In

this case, the observation of the impedance locus at

the input of the coupling network allows the evaluation

of the series losses a and the apparent value Qo’. The

separation of losses occurring within the resonant cavity

and the coupling network becomes impossible; if this

distinction happens to be important, some expedient

must be found to separate the losses in the two parts

of the structure. Sometimes this can be done by con-

structing an auxiliary structure susceptible to physical

dismounting to permit a more complete experimental

study of its parts.

DETERMINATION OF LOADED AND EXTERNAL

Q VALUES

In addition to the natural or unloaded Q values of

the cavity, QO, other Q values are important in the

usual practice. These normally are Q~ and Q.Xt, the

loaded and external Q values, respectively. In the pres-

ence of losses, still other Q values become relevant, as

defined below. Using the conventional definition for

Q, the following descriptive statements can be made:

Q, = 27rf
energy stored

(12)
energy lost in the cavity proper

energy stored
Q,’ = 27rj (1.3)

energy lost in cavity and shunt
element of coupling network

energy stored
Q;’ = 2~f (14)

energy lost in cavity and
coupling networkg

energy stored
Q. = 2Tf (15)

energy lost in cavity, coupling
network, and load

Q.., = hrf
energy stored

-— o (16)
energy lost in the load

For reference, in the absence of coupling network

losses, these can be written as follows, using the nota-

tion shown in Fig. 1(b) (with the cavity coupled

through the coupling network to a source with imped-

ance equal to 2.).10

(17)

(18)

Q.., = wCZO (19)

Q, = Q,’ = Q,” (~())

an d

1
—— —~+~-”
QL –Qo Q~~t

(21)

In the presence of coupling losses, the meaning of

QO, QO’, Qo”, and QL remains clear and unambiguous.

In the case of Q,xti, it is necessary to he specific about

the meaning of the load. Referring to Fig. 3(b), it is

natural to regard the source impedance 20 as the “load”

upon the network and the cavity. However, in the

design of certain electron devices, it is convenient to

include part or all of the loss in the coupling network

with the load. This leads to the following three cases.

Case 1)

Consider 20 alone as the load. In this case, the e:spres-

sioll corresponding to (21) becomes:

111
—— . ——

QL Qo” ‘G”

Case 2)

Consider 20 and R, as the load, and

Case 3)

Consider 20, R,, and Rp as the load and

1 J-4-”Z; –
Qo Qex,

(22)

(23)

(24)

Assuming that the values of QO’ and/or QO hav~; been

experimentally obtained as described above, arnd as-

suming that the parameters a, f?, and ~ are Iinown, the

expressions for QL and Q,xt for the three cases can be

written as follows.

Referring to Fig. 3(b), if V is the voltage across C,

then, from (12),

10Ibid., pp. 393-397.
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1

+ ~’r2

()” = 27rj ~ ~,

-(--)2 p“z”

(25)

Q, = uC/Y’Zu. (~(j)

Similarly,

and,

1
Q,’ = uCfl”ZO —

1 + fY’ZO/R1,

‘Y
—

‘y+l

Q,” = Q~ (1+ a)’ -_
l+a(2+p)

—— Q. .__,_ (1 + .)’
l+71+a(2+p)

()

Q. . Q,: ~+~

1+/3

(27)

(28)

(29)

(30)

(31)

(32)

The Q external values can be found from (16) for the

three conditions stated above or by combining (22),

(23), and (24), with (29), (28), and (26), respectively.

These lead to:

Case 1)

Qext = Q,’ ‘;; :2 (33)

Case 2)

1+.
Q,., = Qo’ —

,R -O!
(3-1)

Case 3)

I+a
(35)QeXt=QO B_a+(~+l)/T’

Thus, if a, (1, and y are all known, it is possible to

determine the various Q values by using the appropriate

relations. If T is not known, the remaining Q values can

still be computed, but only in terms of the apparent Q

value, QO’, a value which does not distinguish between

the losses in the cavity and the shunt element of the

coupling network.

CONCLUSION

It has been shown that an arbitrary coupling network

between a uniform transmission line and a cavity can

be represented by means of an equivalent network

consisting of series and shunt resistors which, qualita-

tively, represent the series and the shunt losses in the

H

F -, 0
1,0

~

Fig. 7—Geometrical construction used to prove the linearity
of the frequency scale.

coupling network. If both of these can be measured by

an independent calibration experiment, the QO of the

cavity can be determined unambiguously from the

measurements of input impedance in the uniform trans-

mission line as a function of frequency. If separate

measurements cannot be made, the measurement of

input impedance as a function of frequency permits the

determination only of the apparent Q value of the

cavity, QO’. Unless the shunt losses in the coupling

network are separately evaluated, this apparent Q value

does not distinguish between the losses in the coupling

network and the cavity proper.

APPENDIX

CONSTRUCTION OF A LINEAR FREQUENCY SCALE

Fig. 6 shows the geometrical construction ~rhich

may be used to establish a linear frequency scale in

order to obtain frequencies for points along an imped-

ance locus for which experimental frequency values are

not available.

Referring to Fig. 7, draw a straight line perpendicu-

lar to the resistive axis; although the location of this

line is immaterial, for the sake of simplicity in the

proof, assume that it passes through the point (1?= 1,

X= O). Radial lines originating from the point (a, O) and

passing through the point on the impedance locus for

which the frequencies are known provide intercepts

along the lines A-B in frequency units. It will be shown

below that the frequency along the axis A-B is linear

so that the frequency of any point on the locus can be

determined by projecting a radial line from (a, 0) to

.4-B and reading the distance along A-B in frequency

units (as established from the known frequency points).

The proof of the construction is as follows.

Using the large circle in Fig. 7 to represent the re-

jection coe$cient plane, the vector FG is the reflection

coefficient I’. The impedance value along the impedance

locus is given by (5). The corresponding values of the
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reflection coefficient can be computed from

or, colnbining with (5),

r = (P – 1) +jwotxa – 1)

(s + 1) +Nad(a + 1)

Thus, when 2QOa = ~ n ,

——
DF= lr=~

l–a——
DF = ——- ~

I+@

Ile distance

(36)

1 – a (p – 1) +j2Q06(a – 1)
DG z ~+—a + –—-——-—--—

(P+ 1) +.i2Q”a(a + 1)
(39)

2(3 – a)
— ———— (.40)

(~ + 1)(8 + 1) +;(cl + 1) ’2 Qcl13“

The phase angle @, shown in Fig. 7, is equal to argllment

(37) DG and is found from the ratio of imaginary to real

parts of (40):

2Q,8(a + 1)
@ = tan–l ——–—

@+l
(41)

(38)
The distance FH, being proportional to tan @, k pro-

portional to 6, i.e., the frequency. T bus, the points

projected from the locus onto the straight line A-B

produce intercepts whose lengths are proportioj~al to

frequency (Q. E.D.).

The Excitation of a Dielectric Rod by a

Cylindrical Waveguide*
C. M. ANGULO~ AND W. S. C. CHANG~

Summary-Thk paper k a theoretical analysis of the excitation
of the lowest circular symmetric TM surface wave along an infhite

circular dielectric rod by a metallic cylindrical waveguide coaxial

with the rod. The asymptotic expressions for all the fields are ob-

tained by means of the Wiener-Hopf method. The expressions for
the total average power transmitted to the surface wave, the total
average power reflected, and the total power radiated, per unit in-

cident power, are derived and computed for c=2.49 for various radii

of the dielectric rod.

lNTRODTJCTION

I

T is well known that a TM circular symmetric

surface wave can be easily launched along a cir-

cular dielectric rod by a metallic cylindrical wave-

guide. A condensed theoretical analysis of an idealized

version of this problem is given here. For the detailed

analysis, the reader is referred to a previous report by

the authors.’

The structure under consideration is represented in

Fig. 1. It consists of an infinite circular dielectric rod

of relative permittivity e and radius a fitted tight into a

* Manuscript received by the PGMTT, February 14, 1958; re-
~-isecf manuscript received, June 2, 1958. The research described in
this paper has been sponsored. by the Cambridge AF Res. Ctr. under
Contract AF 19(604)-1391 with Brown University.

~ Brown University, Providence, R. I.
$ Electronics IZes. Lab., Stanford University, .%anford, Calif.

Formerly at Brown University, Providence, R. I.
1 C. M. Angulo and W. S. Chang, “Excitation of a Dielectric

Rod by a Cylindrical Waveguide, ” Div. of Eng., Brown University,
Providence, R. I., Scientific Rep. AF 1391/7; July, 1957.

semi-infinite cylindrical waveguide of infinitel~ thin

metallic wall which extends from z = — co to z =0.

The incident energy is carried by the TM OJ III ode of

the cylindrical metallic waveguide. It excites a TNI

surface wave along the rod, a reflected wave ‘in the

waveguide, and a scattered radiation at the end of the

metallic waveguide. It is assumed here that along the di-

electric rod only the lowest circular symmetric surface

wave can exist and that the TM O.l mode is the only

mode propagating inside the waveguide. This is true if

2.405(E – 1)–112 <Ka < 5.52e–112, where K= 27r/ho.

Since the structure considered (see Fig. 1) i:} inde-

pendent of @ and the incident wave is the TM 0,1 mode,

only the circular symmetric TM proper and im proper

modes are excited. Therefore, d/dq5 = O and Hp ==& = Ha

= O. Furthermore, all the higher TM modes excited

inside the cylindrical guide attenuate exponentially in

the negative z direction. It follows immediately that

the far zone fields of our problem must be of the forms:

E, = A .TO(K.P) exp [– j(K% – .KG2)1/22]

+I=UO(KCP) exp [j(K’e – Kc’)’ /’%] (1)

H4 =
jAOJeeo
— J~(K,p) exp [– j(K21~ – K/)1/”z]

K.

+ j ~~s JI(KCP) exp [.j(K’c – Kc’) ‘%] (2)
c


